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The design and synthesis of triple-acting PPAR¡, -£, and -¤
agonist 3-(2-ethyl-4-{2-[2-(4-fluorophenyl)-5-methyloxazol-4-yl]-
ethoxy}phenyl)propanoic acid (1a) is described. The compound
possesses a potent triple-acting PPAR¡, -£, and -¤ agonist profile
with an EC50 of 0.029, 0.013, and 0.029¯M, respectively. The
synthetic route, involving the synthesis of oxazole rings as the key
step, starts from commercially available 3-oxopentanoic acid
methyl ester and 3-hydroxyacetophenone to afford the target
compound 1 with an overall yield of 32%.

Insulin resistance is a basic etiological factor for type 2
diabetes and is also linked to a wide spectrum of other
pathophysiologic conditions including hypertension, hyperlipide-
mia, atherosclerosis, and obesity which are collectively called
syndrome X or insulin resistance associated disorders (IRAD).1

Peroxisome proliferator-activated receptors (PPARs), attractive
diabetes target proteins, are members of the nuclear hormone
receptor superfamily and function as transcription factors in the
regulation of genes involved in glucose and lipid fatty acid
metabolism and vessel wall function.2,3 To date, three distinct
PPAR subtypes (PPAR¡, PPAR£, and PPAR¤ or PPAR¢) have
been identified in most mammalian species.4

Currently the two drugs rosiglitazone and pioglitazone on the
market are potent ligands of PPAR£ and show efficient insulin
sensitization in type 2 diabetes patients.5 But to effectively target
insulin resistance/hyperglycemia and associated conditions in-
cluding dyslipidemia and hypertension (i.e., the metabolic
syndrome), the concept of simultaneously activating PPAR¡, -£,
and -¤ through a single compound has received considerable
attention over the past few years.6 A number of PPAR pan agonists
have been described in the literature.7­13 However, to the best of
our knowledge there are no triple-acting PPARs drugs on the
market currently. Thus the development of novel and efficacious
triple-acting PPAR¡, -£, and -¤ agonists has extensively clinical
significance. We herein present the design and synthesis of a new
class of triple-acting PPAR¡, -£, and -¤ agonists below.

Because selective PPAR¤ agonist GW501516 has weak
potency on PPAR¡,14,15 we sought to improve selectivity for
PPAR¡ and subsequently optimize potency and selectivity. The
modifications of the GW501516 included the replacement of
thiazolyl by oxazolidinyl and the head group by the biaryl unit.
Further exploring the effects of modifying the terminal trifluoro-
methyl substituent by a range of groups showed that substitution
in this position was largely well tolerated and the potency
correlated well with the lipophilicity of the substituent (Table 1).
Thus we have accomplished a new class of triple-acting PPAR¡,
-£, and -¤ agonists, one of which, 1a, is currently in clinical trials
for the treatment of dyslipidemia (Figure 1).

We envisaged the compound 1 to be efficiently formed via
intermolecular coupling of the key intermediate 2 and 3
(Scheme 1). The phenol derivative 2 was obtained following
the procedures reported by WO054176.16 For compound 3, we

Table 1. Effects of modifying the terminal trifluoromethyl substituent
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Rosiglitazone Iab 0.001 5.248
1a F 0.029 0.013 0.029
1b CH3 1.175 0.004 0.007
1c NO2 2.884 0.025 0.003
1d t-Bu 5.495 0.089 0.851
1e CHN4 2.630 6.761 6.761

aEC50 value is the molar concentration of the test compound that
causes 50% of the maximal reporter activity. bIa: inactivated.
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Figure 1. A new class of triple-acting PPAR¡, -£, and -¤ agonists.
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Scheme 1. Reagents and conditions: (a) K2CO3, MeCN, reflux, 1 d,
70­90%; (b) NaOH, EtOH, r.t., overnight, 85­95%.
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tried several synthetic routes. The key step was the formation of
oxazole rings as depicted in Schemes 2 and 3. We first attempted
to prepare intermediate 8 by reacting azide 7 with triphenylphos-
phine and acyl chloride.17,18 Azide 7 was produced from 5-
hydroxy-2-pentanone through protection, bromination, and reac-
tion with NaN3.19 However, the yield of this process was
disappointingly low (less than 20%). Efforts to enhance the
efficiency of this reaction by varying the solvents were unsuc-
cessful. Next, we tried another route employing the reduction of
azide 7 to amide 10 through catalytic hydrogenation over the
Pd/C catalyst. Then the reaction of compound 10 with acyl
chloride gave intermediate 11. Subsequent dehydration of com-
pound 11 with POCl3, produced intermediate 8 with an overall
yield of 32%.18 However, the above procedures failed to generate
large quantity of intermediate 8 and, as a result, they are not
applicable to large-scale synthesis. So we turned to the third route
which was much simpler, safer, and more efficient.

In this route, as shown in Scheme 3, the commercially
available 3-oxopentanoic acid methyl ester (12) was brominated
to give bromo ketone 13.19 Compound 13 was cyclized with acid
amides in the absence of solvent under elevated temperatures to
yield the oxazole intermediate 14.20,21 Subsequently, the oxazole
ester was reduced with NaBH4 in methanol to provide the oxazole
alcohol 9.22 Then, elaboration of the hydroxy moiety with MsCl
under alkaline conditions was adopted to afford the key
intermediate 3 with a yield of 56%.21 In this approach, the
reaction of cyclizing compound 13 with acid amides to prepare

intermediate 14 as the key step can easily form an oxazole-olefin
under low pH conditions. Meanwhile, the HBr produced by
cyclization must be timely removed.

The synthesis route for compound 1 is outlined in Scheme 1.
The condensation of phenol 2 with intermediate 3 in acetonitrile
under alkaline conditions was conducted under reflux for 24 h to
generate the ester 15.23 Then saponification of ester 15 with 3M
NaOH, as a final step, afforded the target compound 1 with an
overall yield of 32%.24­29

In conclusion, compound 1a was designed and synthesized as
a novel triple-acting PPAR¡, -£, and -¤ agonist in high purity and
yield. Moreover, the development of these methods to synthesize
oxazole rings is a very useful protocol for the preparation of other
pharmaceutical drugs including oxazole compounds.
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C(CH3)3), 2.35 (s, 3H, CH3), 2.57 (m, 4H, 2CH2), 2.86 (m, 2H, CH2),
2.96 (t, J = 6.4Hz, 2H, CH2), 4.17 (t, J = 6.4Hz, 2H, OCH2), 6.67 (m,
2H, ArH), 7.02 (d, J = 4.0Hz, 1H, ArH), 7.43 (d, J = 4.4Hz, 2H, ArH),
7.89 (d, J = 4.4Hz, 2H, ArH); 13CNMR (CDCl3, 100MHz): ¤ 10.2,
15.1, 25.6, 26.2, 26.8, 31.1 (3C), 34.8, 35.6, 66.5, 111.5, 114.8, 124.6,
125.6 (2C), 125.7 (2C), 129.6, 130.0, 132.3, 143.2, 144.7, 153.1, 157.3,
159.6, 178.5; IR (KBr) ¯max (cm¹1): 2962, 1711, 1606, 1506, 1292, 1197.
HR-MS m/z: calcd for C27H34NO4 [M + H]: 436.2443; found: 436.2523.
Elemental Anal. Calcd for C27H33NO4: C, 74.45; H, 7.64; N, 3.22%.
Found: C, 74.41; H, 7.63; N, 3.25%.

29 3-[2-Ethyl-4-(2-{5-methyl-2-[4-(1H-tetrazol-5-yl)phenyl]oxazol-4-yl}-
ethoxy)phenyl]propanoic acid (1e). White solid. Mp: 145­146 °C;
1HNMR (CDCl3, 400MHz): ¤ 1.11 (t, J = 7.6Hz, 3H, CH3), 2.35 (s, 3H,
CH3), 2.43­2.63 (m, 4H, 2CH2), 2.74 (t, J = 6.4 Hz, 2H, CH2), 2.90 (t,
J = 6.4Hz, 2H, CH2), 4.17 (t, J = 6.4Hz, 2H, OCH2), 6.61­6.68 (m, 2H,
ArH), 6.70 (d, J = 2.4Hz, 1H, ArH), 7.67 (d, J = 8.4Hz, 2H, ArH), 8.08
(d, J = 8.4Hz, 2H, ArH); 13CNMR (CDCl3, 100MHz): ¤ 9.8, 15.1, 25.0,
25.6, 26.2, 35.0, 65.9, 111.5, 114.4, 126.1, 127.3, 128.7, 129.5, 130.2,
133.2, 142.8, 145.6, 155.6, 156.7, 157.5, 173.8; IR (KBr) ¯max (cm¹1):
3451, 2960, 1712, 1616, 1577, 1499, 1438, 1238. HR-MS m/z: calcd for
C24H26N5O4 [M + H]: 448.1940; found: 448.1968.
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